MMU696 - SCIENTIFIC WRITING
Course Name | Code | Semester | Theory (hours/week) |
Application (hours/week) |
Credit | ECTS |
---|---|---|---|---|---|---|
SCIENTIFIC WRITING | MMU696 | Any Semester/Year | 3 | 0 | 3 | 8 |
Prequisites | None | |||||
Course language | Turkish | |||||
Course type | Elective | |||||
Mode of Delivery | Face-to-Face | |||||
Learning and teaching strategies | Lecture Question and Answer Other: Homework, Presentation | |||||
Instructor (s) | Assist. Prof. Dr. Benat Koçkar | |||||
Course objective | To Teach the basic types of communication which is necessary for the success of the gradute students, | |||||
Learning outcomes |
| |||||
Course Content | The Basics of Scientific Writing / Literature survey, the properties Collect and report the results of research which are worth to be published / How to evaluate the quality of the journals which are publishing scientific studies, how to prepare technical papers / How to investigate by judging a draft of a scientific paper / How to submit a paper draft to a archieved scientific journals or engineering papers. | |||||
References | R.A. Day, How to Write and Publish a Scientific Paper, 5th Edition, Onyx Press, 1998. |
Course outline weekly
Weeks | Topics |
---|---|
Week 1 | Introduction to Scientific Writing |
Week 2 | Introduction to Scientific Writing |
Week 3 | Introduction to Scientific Writing |
Week 4 | Abstract and Introduction |
Week 5 | Material, Method and the Results |
Week 6 | Discussion and Conclusion |
Week 7 | Midterm exam |
Week 8 | Referans and acknowledgement |
Week 9 | Tables, Grafics and Images |
Week 10 | Choosing the journal, Behavior to editors, |
Week 11 | How to submit a draft |
Week 12 | Midterm |
Week 13 | Investigation and Conference papers |
Week 14 | Writing Thesis, Oral and Poster Presentation |
Week 15 | |
Week 16 | Final |
Assesment methods
Course activities | Number | Percentage |
---|---|---|
Attendance | 0 | 0 |
Laboratory | 0 | 0 |
Application | 0 | 0 |
Field activities | 0 | 0 |
Specific practical training | 0 | 0 |
Assignments | 4 | 10 |
Presentation | 1 | 10 |
Project | 0 | 0 |
Seminar | 0 | 0 |
Midterms | 2 | 40 |
Final exam | 1 | 40 |
Total | 100 | |
Percentage of semester activities contributing grade succes | 7 | 60 |
Percentage of final exam contributing grade succes | 1 | 40 |
Total | 100 |
WORKLOAD AND ECTS CALCULATION
Activities | Number | Duration (hour) | Total Work Load |
---|---|---|---|
Course Duration (x14) | 14 | 3 | 42 |
Laboratory | 0 | 0 | 0 |
Application | 0 | 0 | 0 |
Specific practical training | 0 | 0 | 0 |
Field activities | 0 | 0 | 0 |
Study Hours Out of Class (Preliminary work, reinforcement, ect) | 12 | 8 | 96 |
Presentation / Seminar Preparation | 0 | 0 | 0 |
Project | 0 | 0 | 0 |
Homework assignment | 4 | 10 | 40 |
Midterms (Study duration) | 2 | 15 | 30 |
Final Exam (Study duration) | 1 | 30 | 30 |
Total Workload | 33 | 66 | 238 |
Matrix Of The Course Learning Outcomes Versus Program Outcomes
D.9. Key Learning Outcomes | Contrubition level* | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1. Has the theoretical and practical knowledge to improve and deepen the information in the different fields of the mechanical eng ineering at the level of expertize based on the undergraduate engineering outcomes. | X | ||||
2. Realizes the interaction between the interdiciplines in which the mechanical engineering applications take place. | X | ||||
3. Uses the theoretical and practical knowledge at the levels of expertize in which he/she gains from his/her field in solving engineering problems. | X | ||||
4. Has the ability to be able to interpret and develop new information via combining his/her knowledge in which he/she becomes expert with the knowledge that comes from different diciplines. | X | ||||
5. Has the abilitiy to be able to solve the problems in engineering applications using research methods. | X | ||||
6. Be able to perform an advanced level work in his/her field independently. | X | ||||
7. Takes the responsibility and develops new strategical approaches for solving encountered and unforeseen complicated problems in engineering applications | X | ||||
8. Be able to lead when the problems encountered are in the fields of the mechanical engineering in which he/she specialized | X | ||||
9. Evaluates the information and skills which he/she gains at the level of expertize in the specifics of mechanical engineering and adjusts his/her learnings as and when needed. | X | ||||
10. Systematically transfers the current progress in engineering field and his/her own studies to the groups in his/her field and to the groups out of his/her fields in written, oral and visual presentations supported by quantitative and qualitative data . | X | ||||
11. Establishes oral and written communication skills by using one foreign language at least at the level of B1 European Language Portfolia. | X | ||||
12. Uses the information and communication technologies at the advanced level with the computer softwares as required by the area of specialization and work. | X | ||||
13. Develops strategy, policy and application plans to the problems at which engineering solutions are needed and evaluates the results within the quality processes framework. | X | ||||
14. Uses the information which he/she absorbs from his/her field, the problem solving and practical skills in interdiciplinary studies. | X |
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest